Regulation of early embryonic behavior by nitric oxide in the pond snail Helisoma trivolvis.
نویسندگان
چکیده
Helisoma trivolvis embryos display a cilia-driven rotational behavior that is regulated by a pair of serotonergic neurons named ENC1s. As these cilio-excitatory motor neurons contain an apical dendrite ending in a chemosensory dendritic knob at the embryonic surface, they probably function as sensorimotor neurons. Given that nitric oxide (NO) is often associated with sensory neurons in invertebrates, and has also been implicated in the control of ciliary activity, we examined the expression of NO synthase (NOS) activity and possible function of NO in regulating the rotational behavior in H. trivolvis embryos. NADPH diaphorase histochemistry on stage E25-E30 embryos revealed NOS expression in the protonephridia, buccal mass, dorsolateral ciliary cells and the sensory dendritic knobs of ENC1. At stages E35-40, the pedal ciliary cells and ENC1's soma, apical dendrite and proximal descending axon were also stained. In stage E25 embryos, optimal doses of the NO donors SNAP and SNP increased the rate of embryonic rotation by twofold, in contrast to the fourfold increase caused by 100 micro mol l(-1) serotonin. The NOS inhibitors L-NAME (10 mmol l(-1)) and 7-NI (100 micro mol l(-1)) decreased the rotation rate by approximately 50%, whereas co-addition of L-NAME and SNAP caused a twofold increase. In an analysis of the surge and inter-surge subcomponents of the rotational behavior, the NO donors increased the inter-surge rotation rate and the surge amplitude. In contrast, the NO inhibitors decreased the inter-surge rotation rate and the frequency of surges. These data suggest that the embryonic rotational behavior depends in part on the constitutive excitatory actions of NO on ENC1 and ciliary cells.
منابع مشابه
Neuronal Growth Cone Dynamics are Regulated by a Nitric Oxide-Initiated Second Messenger Pathway
During development, neurons must find their way to and make connections with their appropriate targets. Growth cones are dynamic, motile structures that are integral to the establishment of appropriate connectivity during this wiring process. As growth cones migrate through their environment, they encounter guidance cues that direct their migration to their appropriate synaptic targets. The gas...
متن کاملPharmacology of ionotropic and metabotropic glutamate receptors on neurons involved in feeding behavior in the pond snail, Helisoma trivolvis.
Glutamate is a key regulatory neurotransmitter in the triphasic central pattern generator controlling feeding behavior in the pond snail, Helisoma trivolvis. It excites phase two motor neurons while inhibiting those in phases one and three. However, the receptors that mediate this regulation are only partially characterized. The purpose of these experiments was to further characterize the gluta...
متن کاملRoles of Neurotransmitters in the Regulation of Neuronal Electrical Properties and Growth Cone Motility
In addition to acting in synaptic transmission, neurotransmitters have been shown to play roles in the development of nervous system. Developing neurons extend neurites to connect to their target cells, and growth cones at the tip of growing neurites are critical for pathfinding. Although evidence for the regulation of axonal growth and growth cone guidance by neurotransmitters and neuromodulat...
متن کاملNitric Oxide Regulates Neuronal Activity via Calcium-Activated Potassium Channels
Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during ...
متن کاملRotational behaviour of encapsulated pond snail embryos in diverse natural environments.
Encapsulated freshwater pond snail embryos display a cilia-driven rotation behaviour that is stimulated by artificially induced hypoxia. Previous studies have suggested that the mixing effect of this behaviour causes enhanced oxygen delivery to embryos within their egg capsules. Despite extensive laboratory-based studies describing this behaviour, it is unclear how this behaviour is used to cop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 20 شماره
صفحات -
تاریخ انتشار 2002